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Abstract—The problem of the concurrent tracking and map-
ping of a river plume front with an autonomous underwater
vehicle (AUV) is formulated and addressed in the framework of
an interdisciplinary approach building on experience in robotics
and oceanographic field studies. The problem formulation is
targeted at the scientific study of the processes by which the
river and the ocean interact. The approach extends previous
work in AUV plume tracking to the simultaneous tracking and
mapping under different ocean and meteorological conditions.
This is done with the help of parameterizable motion control
algorithms to enable adaptation to these time-varying conditions.
The approach is evaluated in simulation with the help of a high-
resolution hydrodynamic model. The test plan covers over 300
test cases exercising the most representative combinations of the
ocean and meteorological conditions. Lessons learned and future
operational deployments are discussed in the conclusions.

Index Terms—AUV River plume, Front-Tracking, Marine
Robotics.

I. INTRODUCTION

A plume is a body of fluid that moves through another one
with different properties. The biogeochemical pathways taking
place at the interface (front) between these different masses of
water have a direct impact, for example, on fisheries, pollution
dispersion, and biological production at large. However, we
are still far from understanding some of these processes and
causal links. This is in part because field studies typically lack
the required spatial and temporal resolutions.

Here, we are interested in the study of estuarine river plumes
and, in particular, of plume fronts occurring when rivers meet
ocean waters. Typically, the study of river plumes is done by
using numerical models and satellite imagery (typically, the
river plume has a distinct colour or surface temperature), by
taking water samples or by doing Conductivity Temperature
and Depth (CTD) casts from a manned vessel. These in situ
measurements are tedious and lack the required spatial and
temporal resolutions. Most remote sensing techniques used to
observe river plumes are affected by cloud coverage. Further-
more, daily satellite imagery has poor temporal and spatial
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resolutions, thus making it difficult to track the evolution of
the plume in smaller time scales. Additionally, remote sensing
products only provide a 2D characterization of the plume
[1]. AUV based field studies are now addressing some of
these limitations because AUVs sample the water column
continuously and may adapt the sampling strategy to the
observations [2]. Several plume tracking algorithms have been
proposed and deployed to accomplish this task. But tracking
is just one aspect of the scientific study of river plumes. In
fact, the scientific study of plumes is also about finding and
mapping them. The problem of finding plumes must be solved
before being able to track them. This is relatively easy to solve
for river plumes, because of an optical signature that can be
detected with the naked eye. The problem of mapping is made
simpler if the edge of the plume, the front, is known in real-
time because mapping efforts are then limited to a spatial band
centered on the front. This observation is the motivation for
the developments presented in this paper.

Fig. 1: Diagram depicting a river plume (adapted from [3],
Fig. 1).

In this work, we are interested in the processes by which
fresh water (lower salinity) from the Douro river (Porto,
Portugal) rich in nutrients, sediments and even pollutants
interacts with denser ocean water with higher salinity (Figure
1). For this reason, it is important to study and map the
dynamics of the plume, which will help predict its influence
on the coastal areas surrounding the river mouth. The plume is
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quite dynamic, mainly because of winds and tidal forcing. In
practice, the front moves back and forth because of the tides.
Surprisingly, or not, the Douro river plume is just a thin layer
of fresh water (typical thickness is around 2 meters) moving
over ocean waters.

The paper is organized as follows. Section II discusses
related work. Section III describes the problem formulation.
Section IV is about the overall tracking and mapping approach,
with special emphasis on the proposed algorithms and param-
eterizations of the ocean and meteorological conditions, and
how these conditions affect performance. It is also about the
deployment of the tracking and mapping algorithms onboard
an AUV for field testing. Section V presents the test plan and
discusses the results of over 300 simulation tests. Finally, the
last section discusses the lessons learned and future work.

II. RELATED WORK

The problem of robotic plume front tracking has received
some attention over the last decade. Next, we briefly discuss
related work.

The problem of tracking of chemical plumes, such as oil
spills has been studied, by several authors. A multi-agent
system for tracking oil spill plumes was successfully simulated
in a realistic test environment by Fahad et al. [4]. This is an
estimator-controller system based on the model of a plume
with a single-point source that causes propagation of the fluid
through advection and diffusion. Li et al. [5] developed a
tracking approach that relies on specific properties of the oil
plume. Thus, it is not suitable for other marine features such
as river plumes. An AUV-mounted sonar, capable of detecting
hydrocarbon clouds, is at the core of an oil plume tracking
algorithm that detects the plume without crossing it [6] [7]. In
our problem, the crossing of the river plume is required and
it is not possible to detect it with the use of sonars.

Zhang et al. [8] proposed an approach to detect ”a horizon-
tally oriented subsurface hydrocarbon plume” located between
depths of 1100 and 1200m caused by the 2010 Deepwater
Horizon oil spill in the Gulf of Mexico.

A protocol for adaptive estimation and tracking of harmful
algal blooms with a set of unmanned surface vehicles (USVs)
using remote sensing data as a prior was developed by Fonseca
et al. [9]. The algal bloom is estimated as a circumference that
the robots will circumnavigate. A circumnavigation control
law is applied to all robots with the goal of converging to
the boundary and maintaining an equal distribution across
the circumference. The algorithm can be modified to take
into consideration ellipsoid shapes. In our work, we do not
consider assumptions on the shape of the plume, other than
being continuous.

Ocean isolines of salinity or temperature have been success-
fully tracked by marine robots. A segment of the open-ocean
Northern Pacific Subtropical Front (STF) was autonomously
tracked with an AUV running a novel ”front core tracking”
algorithm [10]. The parameters of the salinity signature of the
front were first estimated to inform the tracking algorithm.
The proposed algorithm uses a novel model for the salinity

signature of the front. Previous algorithms model the salinity
signature with a linear function connecting the boundaries of
the front. Outside these boundaries salinity is considered to be
constant. Other algorithms model this signature as a smooth
function, with the plume front being located at the peak of the
salinity gradient. Belkin et al. [10] use the front edges instead
of the front axis to guide the ”front core tracking” algorithm.
The vehicle follows the front axis by remaining inside the
front. This strategy has two main advantages: the distance
travelled by the vehicle is minimized because the front is not
fully crossed like in a typical zigzag approach and progression
along the front progression is faster. Furthermore, the risk of
”losing the front” is small because the AUV is kept inside
the front. Here, we are interested in mapping the plume of
the Douro river. This cannot be accomplished by keeping the
AUV inside the front. Furthermore, the Douro plume has a
small front width. This precludes the use of the ”front core
tracking” algorithm

An upwelling front-tracking algorithm was field-tested with
an AUV in Monterey Bay, CA [11]. The algorithm uses a
yoyo vertical trajectory to measure the temperature at dif-
ferent depths while crossing the front at different locations.
The multiple front detection points are used to estimate the
progression of the front. A similar yoyo trajectory will be used
in our implementation to measure salinity at different depths.
Analogous to the described system, multiple crossings of the
front are then used the estimate the progression of the front.

A front-tracking algorithm for a thermal plume caused by
a nuclear power plant outflow was implemented on a USV
and successfully deployed in the field [12]. The algorithm
proposed an adaptive zigzag trajectory based on measurements
of six different variables. These measurements are then used
by a plume indication function that signals if the vehicle is
inside or outside of the plume. The authors conclude that the
dependence of this function on six different variables increases
the robustness of the tracking system. A similar zigzag like
trajectory is used in our approach.

Two approaches for static plume tracking and mapping were
studied by Cannell and Stilwell [13]. In the first, an AUV
travels a fixed path in the study area and then returns a prob-
abilistic distribution of the plume based on the measurements
and path of the agent. The second approach is a non-parametric
boundary tracking algorithm that first runs a classification
phase that identifies the two different regions and proposes
a probability distribution of the plume’s boundary that is then
used to guide the agent along the front. These approaches are
not applicable to the dynamic plume of the Douro river.

Zigzag like trajectories for tracking marine fronts were
experimentally validated with ASVs in [14]. The tracking
system generates an initial path for the vehicle based on a
previous characterization of the front and using observations
from different remote sensing agents.

An algorithm for tracking the Douro river plume with multi-
ple underwater and air vehicles was successfully implemented
and field tested in the field with success is presented in
[1]. Air vehicles are used to find the plume and underwater
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vehicles are used to cooperatively track different segments of
the plume using a combination of zigzag and yoyo trajectories.
Expanding on this implementation, our approach estimates the
front direction and adapts the vehicle’s trajectory to retrieve the
maximum number of perpendicular transects to the front with
the goal of improving the mapping performance. The novel
aspects of the approach include an exploration phase, in which
essential parameters of the plume are estimated, the adaptation
strategy, encompassing concurrent tracking and mapping, and
the use of several parameters to enable the user to select
and configure the new algorithms, as well as to pick the
initial deployment locations, according to the environmental
conditions.

III. PROBLEM STATEMENT

Here, we formulate the problem addressed in this paper.
We are interested in the study of the Douro river plume, more
specifically in the salinity and associated temperature maps.
Thus, we need a few definitions.

The river plume is defined as a scalar field, Plume, evolving
with time:

Plume : D ⊂ R4 → R2 (1)

where D is a closed set. Plume has two variables of interest,
salinity, S, and temperature, T :

Plume(x, y, z, t) = [T (x, y, z, t), S(x, y, z, t)] (2)

No assumptions on the type of mathematical model that
describes these variables are made. The evolution of Plume
is determined by a set of parameters ParametersPlume =
{ρ1, . . . , ρn}. The set of parameters describes wind, tide,
salinity profile of the front, velocity of the plume, among
others, that directly influence the shape and position of the
plume. Some of these parameters are unknown, others are
known a priori, while others are calculated during the mission.

We do not have direct access to Plume function, only to
point-wise measurements taken by an AUV along a trajectory
Traj : [t0, tf ]→ R3.

The position, p of the AUV at time t, is p(t) =
[x(t), y(t), z(t)]. The evolution of p is governed by the equa-
tion of motion:

ṗ(t) = f(p(t), u(t), v(t), t), u(t) ∈ U, v(t) ∈ V (3)

where u(t) and v(t) are respectively the AUV control inputs
and the velocity of the currents; U and V are compact sets.

The measurements of salinity and temperature taken by the
AUV at time t are, respectively, Ŝ(p(t), t) and T̂ (p(t), t).

The streams of salinity and temperature measurements,
taken by the AUV up to time t are respectively

StreamS(t) : [t0, tf ]→ C, StreamS(t) = Ŝ(Traj(t), t) (4)

StreamT(t) : [t0, tf ]→ C, StreamT (t) = T̂ (Traj(t), t) (5)

where C is the space of continuous functions [R→ R].
The problem addressed in this paper is:

Fig. 2: Representation of the δ-band defined by the salinity
values Slow and Shigh.

Problem 1. Given an initial AUV position p(t0) and a set of
parameters, ParametersPlume:

i) Track a δ−band centered on the s isoline of the
plume located at depth zd, Iso(s,zd=0) = { (x, y, z, t) :
S(x, y, zd, t) = s}.

ii) Map the plume in this δ−band defined by two salinity
threshold values, [Slow, Shigh] (Figure 2).

iii) Ensure that the direction of travel of the AUV when
crossing the front is perpendicular to Iso(s,zd) for half of the
total crossings.

iv) Map the isosurface where S(x, y, z, t) = s in the δ-
band

The requirement for perpendicular crossings of the front
comes from the observation that non-perpendicular crossings
can lead to significant distortions in the calculation of the
plume characteristics such as spreading width, length of hy-
drodynamic mixing zone and minimum dilution.

IV. APPROACH

The approach for tracking and mapping the Douro river
plume is based on three different motion adaptation algorithms
and on a front estimation procedure. The algorithms are tuned
with a few parameters to enable user-selected adaptation to
ocean and meteorological conditions.

A. Algorithms

We propose three algorithms to track and map the Douro
plume front (Figure 3). These algorithms are basically charac-
terized by the shape of the resulting paths. The paths depicted
in this figure are horizontal projections of 3D yoyo paths to
be performed by the vehicle.

The Zigzag is characterized by two straight line paths that
make an angle α when the paths cross inside the plume. In
addition, this algorithm also guarantees, up to some error, that
the front is crossed in a direction perpendicular to it when the
vehicle enters the plume.

The Alternative Zigzag adds a straight line segment of
length Dout parallel to the front for excursions outside the
plume. This trajectory results in a faster front progression since
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(a) Zigzag. (b) Alt. Zigzag. (c) Lawn Mower.

Fig. 3: Schematic of the algorithms for tracking and mapping
the Douro river plume.

it increases the space between front crossing points compared
to the Zigzag trajectory.

The ideal crossing of the plume should be perpendicular to
the front, as this is the situation that yields the ideal conditions
for sampling the salinity profile of the plume. For this reason,
a path that always traverses the front with perpendicular
crossings would be ideal. This is achieved by also performing
a parallel transect to the front of length Din when moving
inside the plume. This path is referred to as Lawn Mower.
Change of directions are triggered when the salinity thresholds
[Shigh, Slow] are met and a minimal distance Dmin or a
maximum distance Dmax from the front are reached.

B. Front estimation and detection

Initially, the vehicle does not have any information on the
shape and parameters of the front. This poses two different
problems. Firstly, an initial trajectory must be capable of
crossing the front without any previous information on its
shape. Secondly, the shape of the front must be predicted in
order to determine the perpendicular segments to it.

The problem of finding the front is addressed by having the
vehicle performing a classical zigzag trajectory with an angle
α between all segments of the trajectory. The first three front
crossings enable the estimation of some essential parameters
of the front. After these three crossing points, the trajectory
adaptation algorithms are initiated.

For the front’s prediction, the last and third last front
crossing points, Pcrossn and Pcrossn−2 ∈ R2, are used to
perform a linear prediction. The vector, ~f = [f1, f2]T , is
formed by the two points and represents the estimation of
the front’s direction, γ. Thus,

~f =~Pcrossn − ~Pcrossn−2
,

γ =∠~f = atan2(f2, f1).
(6)

The direction γ is used to compute the perpendicular segments.
The error between the true perpendicular direction and the
predicted is ε.

Figure 4 shows a schematic example of the first zigzag
trajectory and the process of predicting the direction of the
front after detecting three crossing points.

Observe that the plume is a thin layer of fresh water located
at the surface. Hence, the first crossing of the plume is done
at the surface and will determine the reference salinity value

Fig. 4: Schematic representation of the typical zigzag trajec-
tory and the first front estimation γ after three crossings of
the front.

s for the front. This reference salinity value is calculated for
every new mission.

Since the front is characterized by a steep change of the
salinity field, the first survey at the surface is used to find the
maximum derivative of the sampled values and the associated
instant tmax where that maximum rate of change occurs. Let
s be the value of salinity at instant tmax (7). This provides an
estimate of the maximum gradient of the salinity field on that
region.

tmax = {t : max
(∂Ŝ(x, y, 0, t)

∂t

)
}

s = Ŝ(x, y, z, tmax)

(7)

C. 3D mapping

The mapping of the plume has to be done in 3 dimensions.
This is accomplished by having the vehicle performing a yoyo
trajectory, defined by the pitch angle θ = 15◦ between the path
and the horizontal plane and cycling between the surface and
some maximum depth zmax. The nominal value for zmax is
chosen to 10m because the thickness of the plume is in the
order of 2m in nominal conditions. The plume crossing logic
is enabled only when the depth of the vehicle exceeds 25
centimeters (z > 0.25 m).

Fig. 5: Vertical profile of the AUV yoyo trajectory (black
dashed line) while crossing the front. The estimated crossing
point is the middle point between the surface locations.

Figure 5 shows a typical situation where the vehicle crosses
the front when starting inside the plume. A plume crossing,
Pcross, is declared as the middle point between the two last
surface locations, Psurface ∈ R2 (8).
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Pcrossn =
Psurfacei + Psurfacei−1

2
(8)

D. Environmental and algorithm parameters
In this section, we discuss the parameters affecting the

performance of the algorithms.
We consider three environmental parameters: tide, wind and

river outflow. Tides determine the time window during which
the mission should take place – 6 hours during the ebb phase.
In what follows we consider that missions take place during
this phase.

Wind plays an important role in determining the shape of the
plume. There are three main shapes of the plume are caused
by Southerly, Northerly, and East or light wind conditions
(Figure 8). This knowledge is used to select the initial position
of the AUV for any sampling mission. The initial direction
of the vehicle is parallel to the coast. If there is a northerly
wind the vehicle starts in a northward direction. Conversely,
if a southerly wind is identified, we start the vehicle in a
southward direction. The initial location is always fairly close
to the river mouth to guarantee that the vehicle is inside the
plume. Lastly, the southwest wind causes a circular-shaped
plume where the vehicle can start in both directions because
it is always expected to cross the plume.

The levels of the river outflow are a major consideration
when it comes to field deployments of the vehicle. It may
happen that the plume is not well defined for some regimes.
This typically happens when the river discharge is either too
small or too large.

Next, we discuss the trajectory and mapping parameters
used to tune the algorithms. These will directly influence the
behavior and performance of the system. The settings of these
parameters are defined by the user before deploying the AUV.
The results presented in section V provide insights into optimal
parameter selection. The trajectory parameters are presented in
Table I.

Algorithm Parameters
Zigzag α

Alt. Zigzag Dout α
Lawn Mower Dout Din

TABLE I: Trajectory parameters.

The mapping parameters are presented next. These de-
termine the mapping behavior of the vehicle. These are:
the maximum vertical distance (zmax); the yoyo/pitch angle
(θ); plume thresholds (Shigh, Slow); and the minimum and
maximum distance covered by the vehicle after crossing the
front (Dmin, Dmax). Table II presents the parameters used for
the case of the Douro river plume.

Parameter Value
zmax 10 m
θ 15 ◦

[Shigh, Slow] [33, 23]
[Dmin, Dmax] [500, 750]m

TABLE II: Parameters used for mapping the Douro river
plume.

E. Implementation – LSTS toolchain

The algorithms presented in this section were deployed on
a Light Autonomous Underwater Vehicle LAUV with the help
of the open-source LSTS software toolchain developed by the
Laboratório de Sistemas e Tecnologia Subaquática [15].

The toolchain includes DUNE and Neptus, which commu-
nicate with the IMC message protocol [16], as depicted in
Figure 6.

Fig. 6: LSTS toolchain: components and interactions.

Neptus is graphical user-interface supporting planning and
execution control [17]. The LAUV communicates with Neptus
via acoustic modems (when underwater) or via Wi-Fi (when
at the surface).

DUNE is the LAUV onboard software handling navigation,
control, communications, logging and interactions with the
vehicle’s hardware. DUNE provides tasks able to interact
with all sensors and actuators of the LAUV as well as
the software infrastructure to deploy additional control and
navigation tasks.

A new control task was developed to deploy the front-
tracking algorithms as well as the front estimation calculations.
This task communicates with other tasks by using four IMC
messages, as described in Figure 7.

The low-level control of the vehicle is done with the help
of two other control tasks, also called maneuver controllers:
YoYo and GoTo. The new control task sends one message to
each maneuver controller. The GoTo maneuver will control
the vehicle to move to a given waypoint and YoYo maneuver
is about implementing a yoyo trajectory. The new control task
consumes messages encoding the estimated state and salinity
measurements, that are periodically broadcast by the two other
tasks depicted in Figure 7.

DUNE has a simulation mode to facilitate the integration
and validation of new onboard software with the help of
models of the sensors and actuators. This is why the two tasks
sending messages to the new control task can get data from
simulation models and/for recorded files or from the hardware,
in field deployments. This mode was used to validate the
algorithms developed in this work prior to field deployments.

V. RESULTS

We developed a simulation environment developed in MAT-
LAB to test and validate the proposed approach. We used the
DELFT3D ocean model [18] to generate salinity and water
flow data used in these simulations.
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Fig. 7: Control interactions – IMC messages exchanged with other DUNE tasks.

A. Test plan

The algorithms were tested in three main shapes of the
plume determined by different wind conditions: Southerly;
Northerly; and, Light Wind. Typically, Southerly winds result
in faster propagation velocities for the plume.

(a) 9th May 2016 - S plume. (b) 15th May 2016 - N plume.

(c) 2nd May 2017 - LW plume.

Fig. 8: Typical plume patterns for Southerly-S (a), Northerly-N
(b), and East and/or light wind-LW (c) conditions.

Table III describes 307 test cases grouped into 7 different
test sets, A to D, covering different plume conditions and
parameters. Plume conditions included: i) static or dynamic
plumes; ii) 2D or 3D tracking; and, iii) the presence (or not)
of ocean currents. Static plumes do not represent a realistic
test case. Nevertheless, these tests proved very useful to study
the properties of the three algorithms.

Test sets A and B.1 included nine tests each exercising the
three algorithms for the three different plume patterns. B.2
exercises the effect of the AUV velocity v (ranging between
0.5 to 5 m/s). C.2 exercises the effect of the length of the
yoyo cycle (distances between consecutive samples at the
surface) ranging from 3.7 m to 458.1 m. D tests different
values of the trajectory parameters (α ∈ [20, 70]◦, Dout ∈
[100, 800]m and Din ∈ [100, 800]m). The large number of

Fig. 9: Results from set C.1 – 6-hour mission from 4:30 to
10:30 on the S plume. Algorithms: (a) Zigzag, (b) Alt. Zigzag,
(c) Lawn Mower. The vehicle position at surface level (z <
0.25) is represented in black. The orange line represents the
plume’s front.

tests for test set D targeted the development of guidelines for
a decision support system to help the user in picking these
parameters to best suit the testing conditions.

Figure 9 shows simulation runs for test set C.1 with a S
plume. As we can see, the AUV is successfully tracking the
plume with the three algorithms. Also, note that this is the
fastest propagating plume and that the algorithms are still
capable of tracking the front.

Next, we present the performance metrics used in these
simulations before briefly discussing the results for the seven
test sets.

B. Performance metrics

We consider three performance metrics:
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Plume

Set Static Dynamic 2D 3D Ocean
Currents

# of
tests Description

A X X 9 Test performance for a static plume
B.1 X X 9 Test performance for a dynamic plume
B.2 X X 16 Test the effects of the AUV velocity v
C.1 X X 9 Test performance for 3D tracking of a dynamic plume
C.2 X X 30 Test different yoyo configurations
D X X X X 216 Test trajectory parameters (α, Dout and Din)
E X X X 18 Test the effects of ocean currents

307

TABLE III: Test plan.

1) The quality of each mission is measured by the average
error of the front prediction εavg presented below where
i refers to the error in each transect. We also label each
individual transect as optimal if ||εi|| < 20◦.

εavg =
1

n

n∑
i=1

||εi||, (9)

2) The speed of progression along the front vfp (m/s) is
given by the length of the front mapped so far (calculated
from successive front crossings) divided by the duration of
the mission tM :

vfp =
1

tM

n∑
i=2

||~Pcrossi − ~Pcrossi−1
||. (10)

3) The percentage of optimal (perpendicular) crossings for a
given mission.

C. Test sets A, B.1 and C.1: Performance of the algorithms

Test sets A, B.1 and C.1 targeted a comparative study
of the algorithms under the same plume patterns and tuning
parameters. The performance ranking of the algorithms under
these conditions is briefly summarized in Table IV.

Zigzag Alt. Zigzag Lawn Mower
Estimated average error 1 2 1
# of optimal crossings 2 3 1

Front progression 2 1 2

TABLE IV: Rankings of the algorithms: worst (3) to best (1).

D. Test set B.2: Effects of the AUV velocity

Test set B.2 aimed at studying how the vehicle velocity
impacts tracking performance. This was done for the fast S
and slow N propagating fronts. The results are shown in Figure
10.

Observe that some AUV velocities used in these tests are
not feasible. However, these results provide insights into the
role of the vehicle’s speed in the tracking mission. Starting
with the fast front (S plume) represented in blue, we observe
that the increase in velocity produces a better front prediction
that converges to the performance on the static plume (dashed
line). As expected, the increase in the AUV velocity correlates
to an increase in performance for fast moving plumes; this
effect is almost negligible for slow moving plumes.

Fig. 10: Average error, εavg , for different vehicle velocities, v.

E. Test set C.2: Effects of the length of yoyo trajectory cycle

Test set C.2 aims at studying the effects of the length of
the yoyo cycle on performance. In fact, the vehicle samples
the plume’s surface one time per yoyo cycle. For example,
the distance between consecutive samples at the surface is
dsurface = 74.6 m for a pitch angle of θ = 15◦ and with
zmax = 10m

As expected, a general upward tendency in εavg is verified
with the increase of dsurface (Figure 11). However, it is
important to note that this trend is not noticeable when
dsurface < 100m. This provides good evidence that in this
range, the 3D mapping of the plume does not heavily influence
the tracking performance.

One would expect that the vehicle would not be able to
track the plume for larger values of dsurface (e.g., 400m).
Surprisingly, this was not the case for tests with a static plume.

Fig. 11: Effect of the distance between surface points dsurface
on the average error εavg for a Zigzag trajectory.
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F. Test set D: Effects of different trajectory parameters

Test set D evaluated the effects of variations of the α
trajectory parameter for static 2D and dynamic 3D plumes.

In the static 2D tests, larger α angles (and larger Din and
Dout distances) result in larger distances between crossing
points, thus reducing tracking performance (measured by
average error variation on α) as shown in Figure 12a for the
Zigzag algorithm. Similar qualitative results were obtained for
the other parameters and strategies.

In the dynamic 3D tests, the close-to-linear relations ob-
tained for the static 2D tests are no longer valid. The best
performance is not achieved when α = 20◦ but when
α ∈ [30, 50]◦ (Figure 12b). Thus, the best performance is not
guaranteed when the front crossing points are at a minimal
distance from each other. In fact, the locations of Pcross are
not as accurate as before and the prediction with closer points
does not always result in a more accurate description of the
front’s orientation.

(a) Static 2D plume. (b) Dynamic 3D plume.

Fig. 12: Effect of the trajectory angle, α, on the average error,
εavg for a Zigzag strategy.

The effects on the speed of progression vfp are as expected
for all test cases. The speed of progression increases with
larger distances between crossing points which, in turn, in-
creases with α (Figure 13).

Fig. 13: Effect of the trajectory angle α on the speed of
progression vfp.

G. Test set E: effects of ocean currents

The motions of the AUV are affected by ocean currents
(see Equation 3). Moreover, the AUV used in this work does
not have sensors to measure the velocity with respect to the

seabed. This affects the trajectory tracking performance. To
minimize this effect, we used the path correction method
(provided by DUNE) when the AUV reaches the surface: i) the
position of the AUV is reset with the GPS coordinates when
the AUV breaches the surface; ii) the AUV is commanded to
move to the real surfacing position before diving again.

Test set E includes runs without and with the path correction
method. Results are compared to the ones from test set C.1.
Table V shows the effect of the ocean currents on the estimated
average error.

As expected, ocean currents have an impact on the tracking
performance. Overall, the path correction method mitigates
these effects. However, it does not completely correct the
trajectory of the vehicle. In some cases it does not even
improve performance.

Moreover, these tests show that plume tracking is not
compromised by the effects of the ocean currents. Figure 14
shows one run with the same parameters and plume conditions
used in the run from Figure 9, but taking into account the
effects of the water velocity. This simulation is the most
realistic of the overall test plan.

Fig. 14: Simulation run from simulation set E. Zigzag algo-
rithm in the presence of ocean currents (satellite image of the
Douro estuary as background).

H. Salinity maps

One of the main goals of the AUV mission is to map the
plume. The maps built from the sampled salinity data provide
a good characterization of the plume in the band of interest.
Figure 15 shows the salinity map built with the data collected
during the mission represented in Figure 14. Transitions from
the plume to ocean waters are easily identified in this map.

The mapping results for all the tests are very similar to
ones obtained in previous field tests. The validation of these
results should be done with extensive field testing scheduled
for September 2021.

VI. CONCLUSIONS

The problem of tracking and mapping a river plume front
with an AUV is formulated and solved with the help of novel
trajectory adaptation algorithms. The overall approach was
evaluated and tested in simulation using a high-resolution
hydrodynamic model of the plume. The test plan included
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Zigzag Alt. Zigzag Lawn Mower
Plume OC [%] PC [%] ∆ [%] OC [%] PC [%] ∆ [%] OC [%] PC [%] ∆ [%]

N 60 69 9 101 70 -31 8 -7 -15
S 37 28 -9 40 35 -5 -3 -9 -6

LW 37 -5 -42 3 -39 -42 -12 -36 -24

TABLE V: Variation of the average estimation error, εavg , compared to the test where ocean currents are zero. OC - Only
ocean currents are taken into account; PC - Path correction method active; ∆ - Difference between the two results.

Fig. 15: Salinity map obtained from the data collected in the test represented in Figure 14.

307 test cases covering the most representative environmental
conditions. This was an interdisciplinary endeavour at the
intersection of robotics and oceanography. The focus was not
only on robotic exploration, but also on the scientific study of
the plume. The test plan shed some light into the structure of
the front propagation, evolving from an initial sharp variation
of salinity to a situation in which the front has two sharp edges
separated by a plateau, thus presenting an added difficulty
to some tracking algorithms. This observation also provided
insights into trajectory adaptation and, more important, to
the selection of the initial location for the AUV. Space
limitations preclude a thorough discussion of the results, but
our parameterizable approach and the study of the conditions
for parameter selection will be at the heart of a decision
support system for optimized plume field studies. Future work
will also use machine learning techniques to optimize tracking
and mapping campaigns. Extensions to multi-AUV settings
are also being considered. The proposed developments will be
field tested in the next few months with the AUV described
in [15].
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